Network science: Theory and real-world applications

Michele Bellingeri

Davide Cassi

Roberto Alfieri

Massimiliano Turchetto

Ho Chi Minh City, Vietnam, 7/12/2023

Robustness and important components of real-world social weighted networks

Progetto di Grande Rilevanza 2021-2023

Italia-Vietnam

Information and Communication Technologies

Ministero degli Affari Esteri e della Cooperazione Internazionale

Italian group

Prof. Davide Cassi

Prof. Roberto Alfieri

Dr. Michele Bellingeri

Dr. Massimiliano Turchetto

https://www.networks.unipr.it/wordpress/

Network Science

Network science investigates complex networks

A **network** is made by:

nodes (object, persons, places, species, computers...)

connected by links

(relationships, contacts, cables, trophic flows, connections, ...)

Ecological Trophic Networks

Food webs describe 'who eats whom' in ecosystems

Complex Networks

Ministero degli Affari Esteri e della Cooperazione Internazionale

Social Networks

Networks describing social interactions

Complex Networks

Nodes — Individuals

Links → Friendship Contact Working

https://pmrpressrelease.com/global-location-based-social-networking-service-lbsns-market/

Disease spreading

Ministero degli Affari Esteri e della Cooperazione Internazionale NETWORKS UNIT

Social Networks

Online social networks account online social interactions

Facebook complex networks

Nodes \implies Pages

UNIVERSITÀ

DI PARMA

Links \implies Hyperlinks Mutual likes

https://www.cs.uoi.gr/~tsap/teaching/2014-cs-l14/references.html

ecosister

Ministero degli Affari Esteri e della Cooperazione Internazionale NETWORKS UNIT

Communication Networks

Modelling the communication activities among individuals or entities

Email complex networks

Nodes \implies Employees

Links \implies Email exchange

Ministero degli Affari Esteri e della Cooperazione Internazionale

NETWORKS UNIT

Computers Networks

Fig. 1 – Network Structure of the Internet

10.5120/17765-8882

https://newmedialab.cuny.edu/project/complex-networks/

8

Ministero degli Affari Esteri e della Cooperazione Internazionale

Proteins Networks

https://www.creative-proteomics.com/blog/index.php/brief-introduction-of-protein-protein-interaction-ppi/

Ministero degli Affari Esteri e della Cooperazione Internazionale

Many more

Ministero degli Affari Esteri e della Cooperazione Internazionale

(10)

Notions

Shortest path

A "path" is a set of distinct and connected nodes.

The shortest path between two nodes is the minimum number of links

required to travel from one node to another.

Distance between nodes

The distance d_{ij} is the shortest path length between nodes i and j

Notions

Distance between nodes - Applications

The node distance d_{ij} can find:

Best route between physical locations

Fastest information delivery among individuals

Minimum number of airports to travel in a journey

Six degrees of separation!

Ministero degli Affari Esteri e della Cooperazione Internazionale

How to quantify the importance of a node?

Degree Centrality

Number of neighbors = Number of links

The degree of the node *i*

$$k_i = \sum_j a_{ij}$$

UNIVERSITÀ

DI PARMA

Where a_{ij} is the element of the adjacency matrix

Degree Centrality

Ministero degli Affari Esteri e della Cooperazione Internazionale

Degree Centrality

Hyper connected nodes !!

Ministero degli Affari Esteri e della Cooperazione Internazionale

Betweenness Centrality

The betweenness g(i) of the node i is

 $g(i) = \sum_{s,t=1}^{N} \frac{\sigma_{st}(i)}{\sigma_{st}}$

 $\sigma_{st}(i)$ is the number of the shortest paths passing through the node i

 σ_{st} is the total number of shortest paths between nodes s and t

N the number of nodes.

Betweenness Centrality

 $g(i) = \sum_{s,t=1}^{N} \frac{\sigma_{st}(i)}{\sigma_{st}}$

Betweenness Centrality

From least (red) to greatest (blue).

https://en.wikipedia.org/wiki/Betweenness_centrality

Ministero degli Affari Esteri e della Cooperazione Internazionale

NETWORKS UNIT

Closeness Centrality

The closeness is the inverse of the sum of distances to all nodes.

The closeness c(i) of the node i is

$$c(i) = \frac{1}{\sum_{j \neq i, j=1}^{N} d_{ij}}$$

 d_{ij} is the distance between nodes i and j

N the number of nodes.

Closeness Centrality

 $c(i) = \frac{1}{\sum_{j \neq i, j=1}^{N} d_{ij}}$

Different centrality indicators

Different node importance

Network robustness

ROBUSTNESS

Ability to withstand failures and perturbations

Robustness is a critical attribute of many complex systems and complex networks.

Network robustness

Predict network robustness to node removal

Network robustness

Robustness Measure

Largest Connected Component LCC

Maximum number of connected nodes

Real networks main resistant to random removal

Real networks \implies vulnerable to targeted attack

Fraction of nodes removed

Albert and Barabási 2002, Statistical mechanics of complex networks Rev. Mod. Phys. 74, 47.

Ministero degli Affari Esteri e della Cooperazione Internazionale

The quickest network dismantle

Betweenness

Highly effective strategies to dismantle real networks !!

Fig. 3. Size of normalized *LCC* and the fraction q of nodes removed for recalculated targeted attacks to model networks. Points are plotted every 20 nodes removed for networks with N = 500 and N = 1000, and every 200 nodes removed for N = 10000.

Bellingeri M., Cassi D., Vincenzi S., 2014.

Efficiency of attack strategies on complex model and real-world networks, Physica A, 414.

Compare node attack strategies

The best algorithm is betweenness!

The definition is extremely well aligned with the problem

disrupt the main communication paths of the network.

Wandelt et al. 2018. A comparative analysis of approaches to network-dismantling. Sci Rep 8, 13513.

Betweeneess drawbacks

LCC is a complete graph

Nodes has zero betweenness

Betweenness does not select nodes inside a LCC complete graph

Nguyen, Pham, Cassi, Bellingeri, 2019. Conditional attack strategy for real-world complex networks, Physica A, 530, 121561

Betweeneess drawbacks

Remove the highest betweenness node only inside LCC.

Nguyen, Pham, Cassi, Bellingeri, 2019. Conditional attack strategy for real-world complex networks, Physica A, 530, 121561

Network Robustness

LCC drawbacks

LCC accounts the max number of connected nodes **only**

'connected but inefficient' network

Bellingeri et al. 2019. The heterogeneity in link weights may decrease the robustness of real-world complex weighted networks. Sci Rep 9, 10692.

Ministero degli Affari Esteri e della Cooperazione Internazionale NETWORKS UNIT

Network Robustness

Network efficiency Eff

The efficiency measures how efficiently networks exchange information

$$Eff = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{d_{ij}}$$

 d_{ij} is the distance between nodes i and j

N the number of nodes.

Also called communication efficiency.

the less efficient their communication

LCC vs Eff

Handful node removals

LCC is roughly constant

Network \implies 'connected but inefficient'

Bellingeri et al. 2019. The heterogeneity in link weights may decrease the robustness of real-world complex weighted networks. Sci Rep 9, 10692.

Ministero degli Affari Esteri e della Cooperazione Internazionale

Modelling Vaccination

Node removal model vaccination process

Bellingeri M, Bevacqua D, Scotognella F, Alfieri R, Nguyen Q, Montepietra D, Cassi D (2020), Link and Node Removal in Real Social Networks: A Review, Frontiers in Physics, 8,228.

Ministero degli Affari Esteri e della Cooperazione Internazionale IETWORKS UNIT

SIR Epidemic spreading

The population is assigned to compartments:

- Susceptible S Infectious
- Recovered R

https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0022124.g001

Ministero degli Affari Esteri e della Cooperazione Internazionale **NETWORKS**

R

epipack 0.1.5

SIR Epidemic spreading

Evaluates the epidemic spreading pace

^{10.13140/}RG.2.2.28517.19689

Ministero degli Affari Esteri e della Cooperazione Internazionale

35

 au_{15} time steps needed for the disease to strike 15% of nodes

- TI overall number of nodes affected by the disease
 - the maximum number of nodes concurrently infected

the maximum disease prevalence

Modelling Vaccination

Compare node vaccination strategies to halt SIR

Non-adaptive approach

According to the initial network structure

Semi-adaptive approach.

Performing partial node rank recalculation

Sartori et al. A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks. Sci Rep. (2022).

NETWORKS UNIT

Modelling Vaccination

Compare node vaccination strategies to halt SIR

Results

- Different best strategy in the non-adaptive and semi-adaptive approaches
- Best strategy depends on the number of available vaccines.

-Partial rank recalculation increases the efficacy by up to 80%.

Sartori et al. A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks. Sci Rep. (2022).

Correlate

epidemic spreading pace

40 indicators of **network structure**

Salient structural features

- Degree heterogeneity
- Nodes Communities
- Connectivity Level
- Efficiency
- Node Distance

40 Network Structural Indicators (NSI)

ID		Full name		Definition	Reference
1	N	Node number		N is the number of nodes in the network	
2	L	Link number		L is the number of links in the network	
3	С	Connectance	$C = \frac{2L}{N(N-1)}$	L is the number of links, and N is the number of nodes	[15]
4	ķ	Average node degree	$\bar{k} = \frac{1}{N} \sum_{i=1}^{i=N} k_i$	k_i is the degree of the node i , and N is the nodes' number	[1]
5	σ_k	Node degree standard deviation	$\sigma_k = \sqrt{\frac{\sum\limits_{i=1}^{N} (k_i - \bar{k})^2}{N-1}}$	k_i is the degree of the node i,\bar{k} is the average node degree, and N is the nodes' number	[49]
6	AH	Albertson index	$AH = \sum_{i,j \in L} k_i - k_j $	i,j is the link connecting nodes i and j,k_i is the degree of the node i,k_j is the degree of the node j , and L is the network link set.	[46]
7	nAH	Normalized Albertson index	$nAH = \frac{AH}{L}$	$A\!H$ is the Albertson index, and L is the number of links	[49]
8	EH	Estrada heterogeneity index	$EH = \frac{\sum_{i,j \in L} (k_i^{-1/2} - k_j^{-1/2})^2}{N - 2\sqrt{N - 1}}$	i, j is the link connecting nodes i and j, k_i is the degree of the node i and k_j is the degree of the node j, L is the network link set, and N is the node number	[30]
9	Α	Network assortativity	$A = \frac{1}{\sigma_q^2} \sum_{j,k \in \mathbb{N}} jk (e_{jk} - q_j q_k)$	σ_q is the standard deviation of the excess degree distribution, e_{jk} is the fraction of links connecting nodes of degree j and k , and q_j and q_k are the excess degree of nodes of degrees j and k , respectively	[39]
10	ā	Average node distance	$\bar{d} = \frac{1}{N(N-1)} \sum_{i,j \in N, j \neq j} d_{ij}$	d_{ij} is the distance between nodes i and $j,$ and N is the node number	[41]
11	Φ	Network eccentricity	$\Phi = \frac{1}{N} \sum_{i=1}^{i=N} \varepsilon(i)$	$\varepsilon(i)$ is the eccentricity of the node $i,$ and N is the node number	[41]
12	D	Network diameter	$D = \max_{i,j \in N, i \neq j} \left(d_{ij} \right)$	d_{ij} is the distance between i and $j,$ and N the node number	[41]
13	π	Network radius	$\pi = \min_{i \in G} \ (\varepsilon(i))$	$\varepsilon(i)$ is the eccentricity of the node i	[41]
14	Eff	Network efficiency	$Eff = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{1}{d_{ij}}$	d_{ij} is the distance between node i and node $j\!\!,$ and N is the node number	[52]
15	Т	Average node transitivity	$T = \frac{1}{N} \sum_{i=1}^{i=N} \tau_i$	τ_i is the transitivity of the node $\textit{i},$ and N is the node number	[3]
16	В	Average node betweenness	$B = \frac{1}{N} \sum_{i=1}^{i=N} g(i)$	N is the number of nodes and $g(i)$ the betweenness of the node i	[53]
17	nB	Average normalized node betweenness	$nB = \frac{1}{N} \sum_{i=1}^{i=N} {}^n g(i)$	N is the number of nodes, and $^{n}g\left(i\right)$ is the normalized betweenness of the node i	[53]
18	Clo	Average node closeness	$Clo = \frac{1}{N} \sum_{i=1}^{i=N} C_i$	C_i is the closeness of the node $i,$ and ${\cal N}$ is the node number	[54]

Ministero degli Affari Esteri e della Cooperazione Internazionale

 au_{15} Time steps for 15% of infected nodes

 τ_{15} τ_{15} τ_{15} τ_{10} τ_{15} τ_{10} τ_{15} τ_{10} τ_{15} τ_{15} τ_{10} τ_{10} τ_{10} τ

Best Structural Predictor

The average node distance \overline{d}

The mean number of links among node pairs

 au_{15} strong positive linear relationship $\ \bar{d} \sim au_{15}$

Higher $\overline{d} \longrightarrow$ higher the time to infect the 15% of nodes

Bellingeri, Bevacqua, Turchetto, Scotognella, Alfieri, Nguyen, Le, Nguyen, Cassi (2022) Network structure indexes to forecast epidemic spreading in real-world complex networks. Front. Phys.

 ζ Infected peak \longrightarrow maximum nodes number concurrently infected

Best Structural Predictor

 $\frac{\overline{k}}{\overline{d}}$ ratio

the average node degree $\overline{k}\,$ / the average node distance $\overline{d}\,$

$$\zeta$$
 follows a saturating function of $\frac{\overline{k}}{\overline{d}}$

Higher \overline{k} \longrightarrow Higher infected peak

Higher $\overline{d} \longrightarrow$ Lower infected peak

Bellingeri, Bevacqua, Turchetto, Scotognella, Alfieri, Nguyen, Le, Nguyen, Cassi (2022) Network structure indexes to forecast epidemic spreading in real-world complex networks. Front. Phys.

UNIVERSITÀ DI PARMA

Results

To predict spreading

The **distance among nodes** is more important than focusing on their connectivity level

Non-pharmaceutical interventions (NPIs) to halt Covid reduce social interactions

to decrease the number of the network links

More effective NPIs \implies space out the nodes \implies increasing node distance in the network

Bellingeri, Bevacqua, Turchetto, Scotognella, Alfieri, Nguyen, Le, Nguyen, Cassi (2022) Network structure indexes to forecast epidemic spreading in real-world complex networks. Front. Phys.

Thanks

michele.bellingeri@unipr.it

https://www.networks.unipr.it

